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Abstract

Foran arbitrary bounded closed Egi the complex plane with compleme@f finite connectivity,
we study the degree of convergence of the lemniscat&s in
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1. Introduction

UseCfor the complex plane. Leb € 2 be an unbounded domainegtonnectivity which
complement = C\Q consists of the mutually exterior closed bounded simply connected
domainsEy, E», ..., E, with respect to the extended complex plahe= C (J{oo}. Let
I'; be the boundary of;, j = 1,2,...,9, ' =I'1 4+ 12+ --- 4+ I'; be the boundary
of Q.
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For analytic Jordan contodirwhich consists of a finite number of finite mutually exterior
analytic Jordan curves, in 1897, D. Hilbert proved thatin be approximated by lemniscates
which lie in 2 and consist of one component only in the case 1 (se€5]). In the general
case, the corresponding results have been obtained by many writers, for instance, Faber in
1922, Pélya and Sceg6 in 1931, Fekete in 1933, and Walsh and Russell in 1934 (for details,
se€g[5]).

Recently, Dolzhenko (cfl2, p. 21]) raised the problem of estimating the rate of ap-
proximation of a closed Jordan curve by lemniscates in the Hausdorff metric in terms of
properties of this curve. In 2000, Andrievskii[ib] estimated the rate of approximation of
I’ from outside by lemniscates in terms of level lines of a conformal mappifyarfto the
exterior of the unit disk in the cage= 1.

In the present paper, we will estimate the rate of approximatioh fsbm outside by
lemniscates in terms of level lines of the Green’s functio®af the case; > 1.

2. Main definitions and results

Letl';, j =1,2,...,q, bearbitrary mutually exterior Jordan curves of the finite complex
plane,andlef’ = I'1 + 12+ - -+1, be the boundary a®. In this situation{2 possesses a
Green'’s functiorG (z) with pole at infinity, which is harmonic i€ except at infinity; which
outside of some circlg can be expressed as|lfi plus some function harmonic exterior to
y and approaching finite valueg at infinity; and which is continuous in the closed domain
Q except at infinity and vanishes on the bound&r{see[5]). Let H(z) be conjugate to
G(z)in Q.

In the case; = 1, letw = &(z) map2 conformally and univalently ontd = {w :
|lw| > 1}, where®(z) is normalized by the conditionB(co) = co and®’(co) > 0. Then
G(z) =In|®(z)| in the casey = 1.

Butinthe caseg > 1, H(z) isamultiple-valued function, therefor&z) = G(z)+i H(z)
is a multiple-valued analytic function i@ except at infinity. Moreover (s¢B]), the function
D(z) = exp{G(z) + i H(z)} mapsQ conformally but not necessarily one-to-one orteo
that the points at infinity in the two planes correspond to each other. The Green’s function
G(z) has precisely — 1 critical points (the points for which’(z) = 0), counted according
to their multiplicities inQ2, which do not lie on the boundaidy nor at infinity (for detalils,

se€g[5]).
Therefore
p =inf{dist(z, N|z € Q, F'(z) =0} > 0. Q)
Becausd'y, I, ..., I'y are mutually exterior bounded closed sets,

d=inf{dj|dj = distT';, ), j #1;  j,1=1,2,...,q} > 0. o)
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By the argument if5], when all of the critical points of; (z) are outside of the level line
I'iis ={z € Q|G(z) = In(1+ 9)}, the locusl"1 ;5 consists of mutually exteriaranalytic
Jordan curved'ss, I'ps, ..., I'ys5. Moreover, if 0< 01 < d2, then the level lind"y 5, is
exterior tol'1 s, . Thus there existgg > 0, depending op andd, such that if 0< 6 <o,
I'y4s consists of mutually exteriag analytic Jordan curveBys, I'p5, ..., I'y5, Whichis a
contour surrounding each compondit j =1,2,..., ¢4, of I.

LetP,,n=1,2,..., be apolynomial of degree at mastDenote byJ(P,, u), i > 0,
the lemniscate

J(Pps ) = {2z | |Pu(2)| = p}.

By the definition in[1], let S, (E) denote the infimum of > O for which there exists a
polynomial P, = P, s such that/ (P,, 1) is a Jordan contour satisfying the condition

E CintJ(P,,1) Cintl'yy, (©)

whereE is the complement o, int y denotes the interior of.

In what follows we denote by, c1, c2, ..., m, M, ..., positive constants (different each
time, in general) that either are absolute or depend on parameters not essential for the
argument.

Using the quantitys, (E) in [1], Andrievskii obtained the following estimations.
Theorem A1. Inthe casey = 1,for arbitrary Jordan curve’, there existg > 0 such that

clnn

Su(E) < (n>1). “4)

Theorem A,. In the casey = 1, let I' be a Jordan curve of bounded secant variation.
Then there exists > 0 such that

Su(E)< = )
n

In the present paper, our main tool estimatfgE) is the well-known formula (se]
or[5])

1 oG
vwz—/mwﬂﬁwazea ©)
2n I on

wheree$ is the capacity ok, V(z) = G(z) + g, %—g is the exterior normal derivative with
respect to the contour.

A further remark related to the exterior normal derivat%ge which may be proved by
using the extended theorem of harmonic function (for detail[3€8]) is as follows:
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%—g exists almost everywhere dnwhenI” consists of a finite number of finite mutually
exterior Jordan rectifiable curves, and

i/ 9 4 = 1. @)

2n Fal’l

The partial derivatives%% and %% have continuous extentions 10 when I" consists
of a finite number of finite mutually exterior Dini-smooth curves (df), and for any
z=x+iyel,

6_? = 96 cos(i, x) + % cos(n, y) > 0,
on Ox dy

where cost, x) and cosg, y) are the direction cosines of the exterior normal vedtait
the pointz € I' (cf. [5, p. 68]). So%—gr is continuous od” whenI” consists of a finite number
of finite mutually exterior Dini-smooth curves (¢#]), and there exisM, m > 0 such that

n<lom cer ®
on

2 2 -
Moreover, (%%) + (%%) is continuous on the bounded closed @gj bounded by
I andI'144,, and there exis¥/, m > 0 such that

0G\?  (3G\? ~
< —_— — ) < .
m\\/(ax) +<ay> \M, ZEQDCO (9)

Our main results are the following.

Theorem 1. For ¢ >1, let I' be a Dini-smooth Jordan contour which consists of a finite
number of finite mutually exterior Dini-smooth curves. Then for every 0 there exist
&1, 8o, ..., &, € I'andcz > 0 such that

c2lnn

< (10)

1 n
V@) == Injz =&
k=1

holds forz € I'; 1.

Theorem 2. For ¢ >1, let I' be a Dini-smooth Jordan contour which consists of a finite
number of finite mutually exterior Dini-smooth curves. Then there exist® such that

clnn

Sn(E) < (n>1). (11)

n
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3. Some auxiliary results

LetI" be a Dini-smooth contour which consistgphutually exterior Dini-smooth Jordan
curves. By (6), there existarcsly, k = 1,2, ...,nonI such that

0G 1
kel = (12)
I, on n

By &, and¢,; denote the initial point and end point &f respectively. In the positive
direction of I', each/; is an oriented arc. It may occur thhat consists of two subarcs
' c Iyl cI'y(j" #j",1<j’, j”<q), but that can happen for at magtrcs. In
this situation, we have

1 oG 1 oG 1 oG 1

— | =ldl|=— —|d — —|d¢| = —.

2n J;, On ldc] 2n Jy, On ¢l + 2n J;,» on ¢l n

1 oG 11 oG 1

> | =ldid<s— 0= | ==ldd<-. 13
2n I/ on | £| n 2n I on | §| n ( )

If I, isonI;(1<j<gq), thenits end poinf,; coincides with the initial point of the first
arclyonl’;.
So that

1< 1< oG
V@ - =Y Il - &l = EZA['” L LRt | EA TR
k=1 k=1
Estimating dist/"1,5, I") (0 < < op), we have

Lemma 1. There is a constant > 0 such thatist(I'y s, I') > ¢d, 0 < 6 < op.

Proof. Since there exists 1< j <g, such that
dist(I"y 45, I) = dist(ljs, I}),

there existy € I'js, z2 € I'; such that
|z1 — z2| = dist(I'js, I'}) = dist(I'145, 1),

Let V; be the straight line segment from to z». Thenyj is contained in the domain
bounded byl"; andI;; with the exceptional points; andzz. The domainQ;; bounded
by I'j, I'js and the crosscyt; is a simply connected. Hence

fdG

Vi
< Mz — z2l,

1G(z1) = G(22)| =

oG - oG -
/ —— COS(@, x) + — COS@, y) | |d¢]
7 Ox Oy
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9G\2 | [(9G\? . . .
o (’67) + (67) (24 is the domain bounded by; andI”;,,) is
independent o6, and cost, x), cos(, y) are the direction cosines of the tangent veétor
ony;. Note that

whereM = supq.

0
1+

o
—In(1 0, IN1+8)>—0>
G(z1) =In(1+6),G(z2) =0, In(1+9) 159
we get

)
— < M|z1 — 22].
1700 |z1 — z2|

This completes the proof of Lemmia [

Setting

Aj={lllk € T, 1<k<n} UL € Tj 1" € Tjya, 1<k <n — 1)
U I Tl cTj-1,1<k<n}, j=1,2,...,q,

we have

Lemma 2. Foreveryc; > 0,supposethat € I';5,, %0 > 6, > 5+.&, & € Iy, 0r &, & € I/,
oré, &1 el ke Ik, lkj”. Then there existy, c3 > 0 such that

c3lz — &<z — & <ealz — &
or

c3lz — &yl <lz — €< e2lz — gl

Proof. Obviously, it is enough to prove this fdt ¢, € Iy, lx € A;. By (8) and (12), there
existscs > 0 such that

<= 1<k<n, (15)
where|li| is the arclength of. If z € I'j5,, & € Ik, we have

lz — &Iz — &l + 1€ — &l <lz — &l + 1kl
Lemmal implies that there existec> 0 such that

|z — & <colz — &l
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The same reasoning shows that there exists 0 such that
1
lz = &l < —lz = ¢l
c3

This completes the proof of Lemn2a [

Lemma 3. Suppose that € I'j5,, j = 1,2, ..., q. Then there exists; > 0 independent
of z such that

1 0G
ﬁd§<c Inn
Aﬂz g on oIS

holds foré, = <2 or 6, = 63'% wherecy, c3 > 0 are arbitrary constants.

Proof. Fix z € Q, and choos€]; € I'; such that
|z — &Gl = dist(z, I).

Let™ € I'; be the point such that the arc lengths of the sulbgrandI”;” of I'; between
¢ and¢y” equaIsz'.

SinceF’/. is a Dini-smooth arc, the arc length parametrization

é=6(s),ée[ 'FT"]

with &% = £(0), & = é('r ') satisfies (sef])

3 I
csls1 — 52| <|E(s1) — E(s2)| < calsy — 52|, 51,52 € | O, 7 (16)

for somecy, ¢s5 > 0. Itis easy to see from (16) that there exigfs> 0 such that

1 0G
ﬂ|d5|<6’6 Injz — &3 17
/r/ |z —¢&] on ‘ (17
The same reasoning shows that there exists 0 such that
1 k
/ a1 <er|intz - (18)
iz =& @

If z € Iie, then by Lemmad, (17) and (18) imply that there existg > 0 such that

1 oG
<
/Fk_a el <eg . 19)
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Note that for sufficient larga,

Inn

In —| < In n.
n

Hence it follows from Lemma4, (17) and (18) that there existg > 0 such that

1 oG
/ B §| A —|d¢|<cg In n. (20)

holds forz Fjw, which completes the proof. [J

4. Proofs of theorems

Proof of Theorem 1. It follows from (14) that forany € Q,k =1,2,...,n

oG
/“n|Z—f|_|n|Z_§k”?|dé|= éH == 1dZ|.
I n
If |z — &>z — &/, then
n z—¢ I 1_f—fk
Z— Ck Z—ik
<2 E22)
lz — &kl
|§ Skl
21
|Z—§k| 1)
If |z —¢| < |z — &, then
S 3 N P el
7— z7—¢
|f—fk|>
<In{1l+
< lz —¢]
1& — &kl
< 22
lz—¢| " (22)
Foranyz € Q, [y € A;, 1<k<n, j=1,2,..., q, we therefore have

z—¢ || oG 1 1
n spaci< [ma = o lie-aigfen @
/zk 7= || On I lz — &l 1z — &l ¢ @3)
Then it follows from (15) that there exists > 0 such that

z— ¢ || 0G 1 1
/,k'”z—ék *'d5'<n/zkmax{|z—5k|’| fl} o 4 =9

Fixzel'; «,and IetFjg be the component df  which containg (1< <q).
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Define
Bj={l1,l,...., \A;, j=12,...,q.

For anyly, or [, or " € B;, letI';, j1 # j, be the curve which contairig, or [, or
I, forép, Eel,oréy, Eelp,orépyq, & €lil”, we have

lz — Skl = dist([yg, Tj;) Zdist 144, 1),
|z = Cryal 2 distjag, ;) 2 it 1444, 1),
lz — &l =dist(Iyg, Tjy) = dist(IM4aq, 1.
Application of Lemmal implies that there existgc> 0 such that
dist(I"1 44y, I') = c300.

It follows from (21) and (22) that there exists > 0 such that
—¢ c
H % ag < & Z/ el

qldil

lkEB;

= n Jr on

27cy
= . 25
: (25)

On the other hand, in the calges A}, it follows from Lemma2 and (24) that there exists
c5 > 0 such that

7—¢ 1
In|——= = dé —|d¢&
/lk 2= & | < 1A|Z—f|a| -
So that
z—=¢ 5 1
) / in % el < Z % ae
oA, 7 =& iR |z —¢&| On
c5 1
<5 dé 26
/F IZ_€|a| ] (26)

By use of Lemma, there existsg > 0 such that

X
lkeA; k

|
Lenn 27)
n

=t e
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In the casd, = ;' + ", Ik’ € Aj, ;" € Bj,orl’ € B;, I} € A;, without loss of
generality, we assunig’ € A;, I € B;. Then it follows from the above that there exists
¢7 > 0 such that

-
In W d
flk E— G e
z—f z—¢
< In 5 dé +/ In|———|| —=|d¢&
./zk/ z— 5k | | L 12— &k @n | |
fk
+/ In d
w1z = a’l | d
L (28)

n

Thus it follows from (14), (25), (27) and (28) that there exigts> 0 such that for
sufficient largenand anyz € I'y_ 2,

1 n
V@ == Injz =&l
k=1

I
genn (29)
n
This completes the proof of Theorem 1]
Proof of Theorem 2. According to (14), put
1 n
0n(2) =V (@) ==Y Injz—&l. (30)
"=t

Then it follows from the properties of the Green’s functiGniz) of 2 that the function
wy(2) is harmonic inQ2. By Theorem 1, for any1, c2 > 0 an application of the maximum
principle onl’ Lenn (becauseF palns is exterior toFl+<z) implies that there exists
c3 > 0 for suff|C|ent largen, and forz er 1paha,

cz3nn

(31)

It follows from (30) and (31) that fof € I amn

n
[T el = e

k=1
— o8 . e"G(Z)_nwn(Z)

< "8 . pertes, (32)
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Write

pr@ =[]Gc-¢&.

k=1

By (32) the properties of the lemniscates (Ea¢ imply that

|nt F1+c'1 nn C |nt J(p;lk, eng . nC1+L‘3). (33)

1

On the other hand, far € Q satisfyingG(z) > In [l + W] and large enough,
the maximum principle applied oﬁHs@lﬂg) n» for w, (z) shows that (31) holds. So that
for z € Q satisfyingG(z) > In [1+ 3(01*+"””)] and large enough

N 3(c1+c3)inn

nG(z) —nw,(z) = nln |:1
n

i|—C3|nn

3(c1+c3)Inn

> ——————— —c3lnn
14+ 3(01+23) Inn

>2(ci+c3)iInn—c3lnn
> (c1+c3)Inn. (34)

It follows from (34) that

n
1_[ lz — §k| — 8 .enG(z)—n(un(z)
k=1
2 e”g . nCl+C3 (35)
and
intJ (py;, " - n13) Cint I’ L Hepreginn. (36)

Comparing (33) and (36) we get (11), which completes the proafl
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